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Abstract

This paper introduces Weaver, a probabilistic document retrieval system under develop-
ment at Carnegie Mellon University, and discusses its performance in the TREC-8 ad hoc
evaluation. We begin by describing the architecture and philosophy of the Weaver system,
which represents a departure from traditional approaches to retrieval. The central ingredi-
ent 1s a statistical model of how a user might distill or “translate” a given document into
a query. The retrieval-as-translation approach is based on the noisy channel paradigm and
statistical language modeling, and has much in common with other recently proposed mod-
els [12, 10]. After the initial high-level overview, the bulk of the paper contains a discussion
of implementation details and the empirical performance of the Weaver retrieval system.

1 Introduction

This paper introduces the Weaver system for document retrieval, and discusses its performance
on the TREC-8 ad hoc retrieval task. Weaver represents a significant departure from the tra-
ditional tfidf~-based retrieval architecture, and its performance in TREC-8 suggests the promise
of exploring new probabilistic approaches to retrieval.

The Weaver system is based on the use of statistical language modeling methods and the
noisy channel paradigm from communication theory. At its core, however, is a model originally
introduced in the context of statistical machine translation [5]. For this reason, we named the
system after Warren Weaver, who nearly fifty years ago was the first to propose (albeit decades
before computers were up to the task) that statistical techniques might be used to automate
the process of translating text from one language into another.

This paper gives a brief overview of the guiding principles behind Weaver, and discusses
several implementation details, including a description of how Weaver estimates the parameters
of its statistical models from the TREC document collection. The following section contains
an abbreviated discussion of the mathematical fundamentals behind Weaver; a more thorough
treatment can be found in [1]. Section 3 provides details on the architecture of the Weaver
system used in TREC-8. Section 4 contains information on the performance of Weaver in
TREC-8, and some preliminary analysis of the results. We conclude in Section 5 by outlining
some directions for future work.

2 The Probabilistic Framework

In formulating a query to a retrieval system, we imagine that a user begins with an information
need. This information need is then represented as a fragment of an “ideal document”—a
portion of the type of document that the user hopes to receive from the system. The user then



translates or distills this ideal document fragment into a succinct query, selecting key terms
and replacing some terms with related terms.

Summarizing the model of query generation,

1. The user has an information need S.
2. From this need, he generates an ideal document fragment dg.

3. He selects a set of key terms from dg, and generates a query q from this set.

One can view this imaginary process of query formulation as a corruption of the ideal
document. In this setting, the task of a retrieval system is to find those documents most
similar to dg. In other words, retrieval is the task of finding, among the documents comprising
the collection, likely preimages of the user’s query. Figure 1 depicts this model of retrieval in
a block diagram.
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Figure 1. Model of query generation and retrieval

We have drawn Figure 1 in a way that suggests an information-theoretic perspective. One
can view the information need & as a signal that gets corrupted as the user U distills it into
a query q. That is, the query-formulation process represents a noisy channel, corrupting the
information need just as a telephone cable corrupts the data transmitted by a modem. Given
q and a model of the channel—how an information need gets corrupted into a query—the
retrieval system’s task is to identify those documents d that best satisfy the information need
of the user.

More precisely, the retrieval system’s task is to find the a posteriori most likely documents
given the query; that is, those d for which p(d|q, i) is highest. By Bayes’ law,

_plald,U) p(d[U)
rdla.t) = p(q|U) '

Since the denominator p(q|U) is fixed for a given query and user, we can ignore it for the
purpose of ranking documents, and define the relevance pq(d) of a document to a query as

pa(d) = plald,U) p(d[U) . (2)

query-dependent query-independent

(1)

Equation (2) highlights the decomposition of relevance into two terms: first, a query-
dependent term measuring the proximity of d to q, and second, a query-independent or “prior”
term, measuring the quality of the document according to the user’s general preferences and
information needs.



The documents in the TREC-8 evaluation comprise a rather “well-behaved” collection,
insofar as very few are completely implausible candidates for any possible query. Therefore,
we expect there to be little harm in taking p(q|U) to be uniform. However, we imagine that
in retrieval systems using real-world document collections, a non-uniform prior will be crucial
for improved performance, and for adapting to the user’s needs and interests. At the very
least, the document prior can be used to discount short documents, or perhaps documents in
a foreign language.

We give a detailed formulation of one p(q|d) model below, but here we will briefly outline
the strategy for constructing the model. We start with a corpus of (d, q) pairs, where each pair
consists of a query and a document relevant to the query. Given this data, one can construct
a translation model p(q|d), which assigns a probability to the event that q is a distillation of
(a translation of) d.

Retrieval as translation

High-performance document retrieval systems must be sophisticated enough to handle synon-
omy and polysemy—to know, for instance, that pontiff and pope are related terms, and that
suit can refer to clothing or a venue for legal grievance. The field of statistical translation
concerns itself with how to mine large text databases to automatically discover such semantic
relations. Brown et al. [4, 6] showed, for instance, how a system can “learn” to associate French
terms with their English translations, given only a collection of bilingual French/English sen-
tences. We shall demonstrate how, in a similar fashion, an IR system can, from a collection of
documents, automatically learn which terms are related, and exploit these relations to better
rank documents by relevance to a query.

By “translation model,” we mean a conditional probability distribution p(f | e) over se-
quences of source words £ = {fi,..., fn}, given a sequence of target words e = {ey,...,¢e,}.
In the context of French-to-English translation, the value p(f | e) is the probability that, when
presented with the English word sentence e, an expert translator will produce the French
sequence f.

Brown et al. [4] introduce the idea of an alignment A between sequences of words, which
captures how subsets of English words conspire to produce each French word. They also
introduce the idea of a null word, an artificial word added to position zero of every English
sentence, whose purpose is to generate those French words not strongly correlated with any
other words in the English string.

Using A, we can decompose p(f | e) as

p(f|e)= prA|e pr|Ae (Ale) (3)

The IBM family of translation models is predicated on the simplifying assumption that
exactly one English word is responsible for a given French word. We can therefore write

f|Ae Htfz|€a (4)

Here e,, is the English word aligned with the ith French word, and ¢(f | €) is a parameter of
the model—the probability that the English word e is paired with the French word f in the
alignment.

We use the convention that boldface roman letters refer to collections of words such as documents or queries,
while italic roman letters refer to individual terms. Thus p(q|d) refers to the probability of generating a single
query word from an entire document d.



If f contains m words and e contains n + 1 words (including the null word), there are
(n 4+ 1)™ alignments between e and f. The most basic member of this family of models,
Model 1, simplifies matters dramatically by assuming that the translation probability p(f | e)
does not depend on the order in which the words appear in the sentences. Thus we can write

m

p(f]e) = m|e ZHtleea . (5)

Given a collection of bilingual sentences C = {(f1,e1), (f2,e2), (f5,e3) ..., the likelihood
method suggests that one should adjust the parameters of (5) in such a way that the model
assigns as high a probability as possible to C. This maximization must be performed, of course,
subject to the constraints 3, ¢(f | e) =1 for all e. Using Lagrange multipliers,

t(f|e):A_IZp(f,A|e 25 [ fi)o(e, eq,), (6)
A 7=1

where ¢ is the Kronecker delta function.

The parameter ¢t(f | €) appears explicitly in the lefthand side of (6), and implicitly in the
right. By repeatedly solving this equation for all pairs f,e (in other words, applying the EM
algorithm), one eventually reaches a stationary point of the likelihood.

Equation (6) contains a sum over alignments, which is exponential and suggests that the
computing the parameters in this way is infeasible. In fact, this is not the case, since

Zﬁt<f¢|eai>:f[i (il 7

A i=1

This rearranging means that computing 3~ 4 p(f, A | e) requires only ©(mn) work, rather than
O(n™).

Brown et al. propose a series of increasingly complex and powerful statistical models of
translation, the parameters of which are estimated by a bootstrapping procedure. We have
described here only that portion of the IBM translation approach that is directly relevant to
the retrieval method described below. For further details on statistical machine translation,
we refer the reader to two articles [4, 6].

A Model of Document-Query Translation

Suppose that an information analyst is given a news article and asked to quickly generate a
list of a few words to serve as a rough summary of the article’s topic. As the analyst rapidly
skims the story, he encounters a collection of words and phrases. Many of these are rejected
as irrelevant, but his eyes rest on certain key terms as he decides how to render them in the
summary. For example, when presented with an article about Pope John Paul 1I’s visit to Cuba
in 1998, the analyst decides that the words pontiff and vatican can simply be represented
by the word pope, and that cuba, castro and island can be collectively referred to as cuba.

We consider the simplest of the IBM translation models for the document-to-query mapping.
This model produces a query according to the following generative procedure. First we choose
a length m for the query, according to the distribution ¢ (m|d). Then, for each position
J€[l...m] in the query, we choose a position ¢ in the document from which to generate ¢;,
and generate the query word by “translating” d; according to the translation model t(-|d;).
We include in position zero of the document an artificial “null word,” written <null>. The



purpose of the null word is to generate spurious or content-free terms in the query (consider,
for example, a query q = Find all of the documents...).

Let’s now denote the length of the document by |d| = n. The probability p(q|d) is then
the sum over all possible alignments, given by

plald) = (O X 3 Tl ®)

Just as the most primitive version of IBM’s translation model takes no account of the
subtler aspects of language translation, including the way word order tends to differ across
languages, so our basic IR translation approach is but an impressionistic model of the relation
between queries and documents relevant to them. Since IBM called their most basic scheme
Model 1, we shall do the same for this rudimentary retrieval model.

A little algebraic manipulation shows that the probability of generating query q according
to Model 1 can be rewritten as

pald) = eonld) I (- oplar1 @) + | o))

i=1

where
plgild) =) tlg|w)l(w]d),
w

with the document language model [(w|d) given by relative counts. Thus, we see that the
query terms are generated using a mixture model—the document language model provides the
mixing weights for the translation model, which has parameters ¢(q|w). An alternative view
(and terminology) for this model is to describe it as a Hidden Markov Model, where the states
correspond to the words in the vocabulary, and the transition probabilities between states are
proportional to the word frequencies.

3 Architecture of Weaver

As described in the previous section, Weaver assigns relevance rankings to documents according
to a probability p(q | d) that a user would distill the document into the query. To rank
documents, Weaver doesn’t employ a reverse index, but instead visits each document d in the
collection and computes (8) for each. This is a tremendously expensive operation, but one can
reduce the work somewhat by first performing a fast match: eliminate all documents which
share no words in common with the query.

Phrases

Although Weaver takes a non-traditional approach to retrieval, it still relies on a standard
independence or “bag of words” assumption, ignoring word order within documents and queries.
As a modest step in the direction of context-awareness, Weaver does recognize a select set of
two-word phrases.

We identified phrases using the statistical measure of mutual information. Within the
corpus C of documents appearing on TREC disks 4 and 5 (excluding the Congressional Record
documents), we ranked all pairs of words z,y according to their mutual information, and
identified the highest-scoring pairs as phrases. In this context, the mutual information between
two words is the reduction in uncertainty about the presence of y that results from knowing
whether z was the preceding word.



FINANCI TIME SAN DIEGO

UNIT STATE WHITE HOUS
WALL STREET FISCAL YEAR
PRIME MINIST GEORG BUSH
SOVIET UNION PRIVAT SECTOR
HONG KONG NUCLEAR POWER

SAN JOSE CHIEF EXECUTIVE
STOCK MARKET PENSION FUND
SAN FRANCISCO BILL CLINTON

Table 1: A subset of the 11,644 phrases automatically discovered from the newswire docu-
ments in TREC disks 4 and 5 using the mutual information criterion.

Define
count(y)
Py = > count(w)
p(2,y) count(z, y)

> cOunt(v, w)

as the frequency of the word y and the frequency of the bigram z, y, respectively. Furthermore,

define

H(y) = —p(y)logp(y) — (1 - p(y)) log(1 - p(y))
Higla) = =pleplog St — (1= pe, ) tog (1 - 2

as the entropy of the word y and the bigram z, y respectively. Putting these definitions together,
the mutual information score of the bigram z, y is

Ia;y) € Hy) - H(y| @)

Intuitively, I(z;y) measures the reduction in uncertainty about whether y will be the next word
in a sequence of text, given that x was the previous word. In practice, bigrams like Hong Kong
tend to exhibit high mutual information. Table 3 lists a selected subset of the 11,644 phrases
automatically extracted from the News portion of TREC disks 4 and 5.

Vocabulary issues

We elected to use the Porter stemmer to canonicalize English surface forms. This stemmer’s
deficiencies are well known—it aggressively conflates words, a characteristic which can some-
times be a liability: policy and police, for instance, are mapped to the same stem. On
this first large-scale trial of Weaver, however, we decided to err on the side of a smaller active
vocabulary.

We employed the 571-member SMART stopword list to eliminate common words from
documents and topics. After applying stemming, pruning stopwords, and adding statistical
phrases, we partitioned the collection of active documents into two portions: Federal Register
documents and news documents, as summarized in Table 3. We selected the most common
100, 000 words from each corpus and built separate models on each corpus.



When searching for relevant documents, we scored Fereral Register documents according
to the models trained on this portion of the data and news documents according to their
own model. Combining rankings across the two partitions was a simple matter: each model
produces a probability estimate p(q | d), and these estimates are comparable across models.

model corpus size (in documents)
FR Federal Register (1994) 55,630
Financial Times (1991-1994)
News 155 Angeles Times 472,525
Foreign Broadcast Information Service

Table 2: Since the content (and presumably occurrence statistics) of the Federal Register
data appeared markedly different from the rest of the TREC-8 collection, we elected to
separate out this data and process it independently of the rest.

Synthetic data

The translation model is parametrized in terms of #(¢ | w), the probability that a word w
in a document will “generate” the word ¢ in a query for which that document is relevant.
Before using these models, one needs to assign a value to each of these parameters. We
compute maximum-likelihood values for the model parameters from a collection of queries
and documents relevant to those queries. Given such a model and a new query q’, assigning
relevance judgments is a matter of computing p(q’|d) for each d €C.

One could imagine using relevance judgments from previous TREC evaluations as the train-
ing data from which to learn model parameters. However, the number of parameters in the
models we use is sufficiently large (the square of the number of recognized words) that just a
few hundred topics won’t suffice to estimate the parameters accurately. In fact, we know of no
publicly-available collection of relevance judgments of suitable heft. Therefore, we synthesize
training data as follows: from a TREC document, select words randomly to create a query,
and take the document to be relevant to the query. For details on generating synthetic data
by sampling, we refer the reader to [1].

For the TREC-8 experiments, we generated, for each of the two partitions of the data, one
million synthetic queries of 15 words each.

System configuration

We ran the TREC evaulation on one of six UltraSPARC 11 248 Mhz processors belonging
to a Sun UltraEnterprise 3000 machine containing 1.5GB of physical memory, running the
SunOS 5.5.1. operating system. Other than the fast match described above, we performed no
optimization for speed or memory usage. Parameter estimation and document ranking required
several days to complete.

Smoothing

For statistical models of this form, smoothing or interpolating the parameters away from their
maximum likelihood estimates is crucial. We used a simple linear mixture of the background
unigram model and the EM-trained translation model:

palqld) = ap(q|D)+ (1-a)p(qld)



= apI D)+ (1-a) Y 1wl d)tlg]w).
wed

The weight was empirically set to o = 0.05 by optimizing performance on a different dataset:
a portion of the 1998 TREC Spoken Document Retrieval (SDR) data. Figure 3 shows the
behavior of the system on the TREC-7 evaluation as a function of a.

The effect of smoothing

R-Precision

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 1
alpha

Figure 1: Retrieval performance of Weaver on the TREC-7 ad hoc retrieval task, as a func-
tion of «, the weight of the corpus-wide (“back-off”) unigram language model in p(q | d).
Although we set o = 0.05 for the TREC-8 evaluation, it appears that the system is quite
insensitive to the exact degree of smoothing, at least within a reasonable range.

4 TREC-8 Performance

Table 4 contains the precision /recall results for the Weaver system within the TREC-8 ad hoc
automatic evaluation, as reported by NIST. Figures 2 and 3 display the performance of Weaver
relative to all other systems participating in the TREC-8 ad hoc automatic evaluation.

Precision:
0.00 | 0.6426 Precision at:
0.10 | 0.4673 5 docs: | 0.44%0
0.20 | 0.3671 10 docs: | 0.4120
0.30 | 0.3179 15 docs: | 0.3600
0.40 | 0.2804 20 docs: | 0.3370
0.50 | 0.2363 30 docs: | 0.3100
0.60 | 0.1887 100 docs: | 0.2134
0.70 | 0.1574 200 docs: | 0.1554
0.80 | 0.1157 500 docs: | 0.0940
0.90 | 0.0753 1000 docs: | 0.0588
1.00 | 0.0355 R-Precision: | 0.2696

Average : | 0.2447

Table 3: Performance of the Weaver system in the TREC-8 automatic ad hoc evaluation.
The topics consisted of titles and descriptions.

We report our results on the topics consisting of titles and descriptions only, but note in
passing that the system performed slightly worse (roughly two percentage points in overall



Weaver: relative performance
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Figure 2: Performance of the Weaver system (represented by points) relative to the median
performance of all automatic ad hoc TREC-8 systems (represented by vertical lines).

precision) when provided with the narrative portion as well. This is a somewhat unsuspected
result—we observed the narratives to aid performance in internal experiments on earlier TREC
datasets—which we plan to explore further.

5 Conclusions

TREC-8 marks the first large-scale evaluation of the retrieval-as-translation paradigm. Along
with the language modelling approach put forward by the University of Massachusetts [12]
and the Hidden Markov Model system deployed by BBN in TREC-7 [10], Weaver represents
a departure from the traditional tfidf-based retrieval architecture. Its major asset is a strong
theoretical grounding in probability; its major weakness is the computational burden it incurs.
Our immediate future plans will focus on ways to reduce this burden without compromis-
ing accuracy. Equipped with a faster retrieval engine, we hope to be able to conduct more
experiments to understand how best to extend and improve the Weaver system. We are also
investigating ways to incorporate pseudo-feedback into the probabilistic framework.
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